

BAULKHAM HILLS HIGH SCHOOL

2015 HSC Assessment Task 1

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 50 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- All necessary working should be shown in every question
- Marks may be deducted for careless or badly arranged work
- Attempt all questions.
 Use the answer booklet provided.
- Answer each question on the appropriate page

Total marks -42 Exam consists of 4 pages.

This paper consists of TWO sections.

Section 1 – Page 2
Multiple Choice
Question 1-3 (3 marks)

Section 2 – Pages 3-5 Extended Response Question 4-6 (39 marks)

Section I - 5 marks

Answer in the table provided in the answer booklet

- 1. What value of z satisfies $z^2 = 7 24i$?
 - (A) 3 4i
 - (B) -3 4i
 - (C) 4 3i
 - (D) -4 3i
- 2. Which of the following is true for all complex numbers of z?
 - (A) $\operatorname{Im}(z) = \frac{z + \tilde{z}}{2}$
 - (B) $\operatorname{Im}(z) = \frac{z \bar{z}}{2}$
 - (C) $\operatorname{Im}(z) = \frac{z + \bar{z}}{2i}$
 - (D) $\operatorname{Im}(z) = \frac{z-\bar{z}}{2i}$
- 3. Which Argand diagram could show the complex numbers z and $\frac{zi}{2}$?

(A)

(B)

(C)

(D)

End of Section I

Section II - Extended Response

Attempt questions 6-10.

Answer each question on the appropriate page of the answer booklet, showing all necessary working.

Question 4 (12 marks) Marks (a) (i) Express 1 + i in modulus argument form 2 Hence evaluate $(1+i)^{12}$ 2 (ii) Let z = 3 + i and w = 1 - i. Find, in the form x + iy, (i) 2z + iw. 2 zw. (ii) 2 (iii) 2 Find real numbers x and y such that (1+i)x + (2-3i)y = 102 (c) **End of Question 4** Question 5 (13 marks) On an Argand diagram, the points P, Q, R represent the complex roots 1, w and w^2 . a) 3 If 1, w and w^2 are the 3 roots of $z^3 - 1 = 0$. Find the area of the triangle ΔPQR . Let ω be one of the non-real roots of the equation $z^3 + 27 = 0$ b) Factorise the cubic polynomial $z^3 + 27$ over the field of real numbers. (i) 1 Show that $\omega^2 - 3\omega + 9 = 0$ (ii) 1 3 Hence find the value of $\left(\frac{\omega^2}{3} + 3\right)^6$ (iii) c) Sketch the following loci on separate argand diagrams $\operatorname{Re}\left(\frac{z-4}{z}\right) = 0$ (i) 3

End of Question 5

(ii) $\frac{3\pi}{4} \le \arg(z-1) \le \pi$ and $|z-1-i| \le 1$

3

a) It is given that ABCD is a square and ABO is an equilateral triangle. If the vector $\overrightarrow{CB} = -1 + i\sqrt{3}$, find the complex number represented by the point C.

b) (i) Solve for $z^4 = 1$ for all z

1

(ii) Hence or otherwise, solve $z^4 = (z - 1)^4$

3

c) (i) Show that the roots $z^5 + 1 = 0$ on a unit circle in an Argand diagram.

2

(ii) Factor $z^5 + 1$ into irreducible quadratic and linear factors with real coefficients

2

(iii) Deduce that $\cos \frac{\pi}{5} + \cos \frac{3\pi}{5} = \frac{1}{2}$ and $\cos \frac{\pi}{5} \cos \frac{3\pi}{5} = -\frac{1}{4}$

2

(iv) Write a quadratic equations with integer coefficients which has roots $\cos \frac{\pi}{5}$ and $\cos \frac{3\pi}{5}$.

1

End of Exam

BAULKHAM HILLS HIGH SCHOOL EXTENSION? THAN HE CAMPSOLUTIONS

Solution	Marl	KS .	Comments
Section 1			
1 C - By expanding looking $2abi$ term and then $a^2 - b^2$	1		
$2 D - \frac{x+iy-(x-iy)}{2i}$	1		
3 B - $z \times \frac{i}{2} = z \times i \times \frac{1}{2}$, Multiplying by <i>i</i> rotates counter clockwise 90° Multiplying by $\frac{1}{2}$, halves the modulus	1		

	Solution	Marks	Comments
	TONS 4		
Øa (i)	$ z = \sqrt{1^2 + 1^2} = \sqrt{2}$ $\arg(z) = \tan^{-1}\left(\frac{1}{1}\right) = 45^{\circ} \text{ or } \frac{\pi}{4}$ $\therefore 1 + i = \sqrt{2} \operatorname{cis} 45^{\circ}$	2	2 marks • equivalent correct expressions 1 mark • correct modulus • correct argument
6a (ii)	$(1+i)^{12} = (\sqrt{2}\operatorname{cis} 45^{\circ})^{12}$ = 64\text{cis}180^{\circ} = -64	2	2 marks • correct value 1 mark • correct use of DeMoirves Theorem • simplified to a correct principle argument
6b (i)	$2z + iw = 2(3+i) + i(1-i)$ $= 6 + 2i + i - i^{2}$ $= 6 + 2i + i - i^{2}$ $= 7 + 3i$	2	2 marks • correct answer 1 mark • correctly simplifies $i^2 = -1$ • correct expansion and simplifies
6 b (ii)	$(3-i)(1-i) = 3-3i-i+i^{2}$ $= 2-4i$	1	2 marks • correct answer 1 mark • correctly simplifies $i^2 = -1$ • correct expansion and simplifes
бc	$(1+i)x + (2-3i)y = 10$ $x + xi + 2y - 3i = 10$ Equating Real: $x + 2y = 10(1)$ Equating Imaginary: $x - 3y = 0$ $x = 3y(2)$ Sub (2) into (1): $3y + 2y = 10$ $y = 2$ Sub $y \rightarrow (2)$: $x = 6$ $x = 6$ $x = 6$	2	2 marks • correct answer 1 mark • Equates Real • Equates imaginary

	Solution	Marks	Comments
QUEST	ION # 5		
7a	Method 1: Since the 3 roots are equally spaced then the angle between each root is 120°. $Area = 3\left(\frac{1}{2} \times 1 \times 1 \times \sin 120^{\circ}\right)$ $Area = \frac{3\sqrt{3}}{4}$ $z^{3} + 27 = 0$	2	3 marks • Correct solution 2 mark • Significant progress towards solution with good reasoning 1 mark • Progress towards solution with good reasoning
10 (I)	$ z^3 + 27 = 0 $ $ (z+3)(z^2 - 3z + 9) = 0 $	1	1 mark • Correct solution
7b (ii)	since ω is a root of $z^3 + 27 = 0$ then $\omega^3 + 27 = 0$ $(\omega + 3)(\omega^2 - 3\omega + 9) = 0$ Since ω is non-real, then $\omega \neq -3$ $\omega^2 - 3\omega + 9 = 0$ $\omega^2 + 9 = 3\omega$	1	1 mark • Correct solution
16 (iii)	$\omega^{2} + 9 = 3\omega$ $\frac{\omega^{2}}{3} + 3 = \omega (divided both sides by 3)$ $\left(\frac{\omega^{2}}{3} + 3\right)^{6} = \omega^{6} (power of 6 on both sides)$ $\left(\frac{\omega^{2}}{3} + 3\right)^{6} = (\omega^{3})^{2}$ $= (-27)^{2} (since \ \omega^{3} = -27)$ $= 729$	3	3 marks • Correct solution 2 mark • Manipulates • Equates imaginary 1 mark • Correctly simplifies $\omega^3 = -27$ • Attempts to manipulate $\omega^2 - 3\omega + 9 = 0$
1 c	$ CB = \sqrt{1^2 + \sqrt{3}^2} = 2$ $AB = BC = CD = DA \text{ (sides of a square are equal)}$ $AD = DO = OA \text{ (sides of an equilateral triangle are equal)}$ $\therefore OD = 2$ $\overrightarrow{DC} = \overrightarrow{CB} \times -i$ $\overrightarrow{DC} = -i(-1 + i\sqrt{3})$ $\overrightarrow{DC} = \sqrt{3} + i$ $\overrightarrow{OC} = \overrightarrow{OD} + \overrightarrow{DC}$ $\overrightarrow{OC} = 2 + \sqrt{3} + i$	3	3 marks • Correct solution 2 mark • Significant progress towards solution with good reasoning 1 mark • Finds modulus of CB • Uses i to rotate to the correct direction

QUESTION & &				
Re $\left(\frac{x+iy-4}{x+iy}\right) = 0$ Re $\left(\frac{(x-4+iy)(x-iy)}{(x+iy)(x-iy)}\right) = 0$ Re $\left(\frac{x(x-4)+y^2+i(yx+y(x-4))}{x^2+y^2}\right) = 0$ $\frac{x^2-4x+y^2}{x^2+y^2} = 0$ $(x-2)^2+y^2 = 4$ $\therefore it is a circle with centre (0,2) and radius 2$	2	 2 mark Correct solution and diagram 1 mark Progress towards solution with good reasoning Uses z = x + iy correctly Extracts the real part of an expression 		

h			
8c (ii)	$z^5 + 1 = (z - z_0)(z - z_1)(z - z_2)(z - z_3)(z - z_4)$		2 marks • correct solution
	$=[(z-z_0)(z-z_4)][(z-z_1)(z-z_3)](z+1)$		1 mark
	$z_0 + z_4 = cis\frac{\pi}{5} + cis\frac{-\pi}{5} = 2\cos\frac{\pi}{5}$		 Correctly simplifies z₁ + z₂. Correctly simplifies
	$z_1 z_4 = 1,$	2	$z_1 z_2$.
	$z_1 + z_3 = cis\frac{3\pi}{5} + cis\left(\frac{-3\pi}{5}\right) = 2\cos\frac{3\pi}{5},$	2	
	$z_1 z_3 = 1$		
	$z^{5} + 1 = (z+1)\left(z^{2} - 2z\cos\frac{\pi}{5} + 1\right)\left(z^{2} - 2z\cos\frac{3\pi}{5} + 1\right)$		
₿c (iii)	Substitute $z = i$:		2 marks • correct solution
	$(i+1) = (i+1)\left(-2i\cos\frac{\pi}{5}\right)\left(-2i\cos\frac{3\pi}{5}\right)$		T mark Proves one of the identities.
	$1 = -4\cos\frac{\pi}{5}\cos\frac{3\pi}{5}$		identities.
	$\cos\frac{\pi}{5}\cos\frac{3\pi}{5} = -\frac{1}{4}$		
	Substitute $z = 1$:		
	$2 = 2(2 - 2\cos\frac{\pi}{5})(2 - 2\cos\frac{3\pi}{5})$	2	
	$\frac{1}{4} = (1 - \cos\frac{\pi}{5})(1 - \cos\frac{3\pi}{5})$		
	$\frac{1}{4} = 1 - (\cos\frac{\pi}{5} + \cos\frac{3\pi}{5}) + \cos\frac{\pi}{5}\cos\frac{3\pi}{5}$		
	$\frac{1}{4} = 1 - \left(\cos\frac{\pi}{5} + \cos\frac{3\pi}{5}\right) - \frac{1}{4}$		
	$\cos\frac{\pi}{5} + \cos\frac{3\pi}{5} = \frac{1}{2}$		
8 c (iv)	$sum of \ roots = \cos\frac{\pi}{5} + \cos\frac{3\pi}{5} = \frac{1}{2}$		1 marks • correct solution
	$product of \ roots = \cos\frac{\pi}{5}\cos\frac{3\pi}{5} = -\frac{1}{4}$		
	$x^2 - \frac{b}{a}x + \frac{c}{a} = 0$	1	
	$x^2 - \frac{1}{2}x - \frac{1}{4} = 0,$		
	$4x^2 - 2x - 1 = 0$		